Metabolic network model of a human oral pathogen.
نویسندگان
چکیده
The microbial community present in the human mouth is engaged in a complex network of diverse metabolic activities. In addition to serving as energy and building-block sources, metabolites are key players in interspecies and host-pathogen interactions. Metabolites are also implicated in triggering the local inflammatory response, which can affect systemic conditions such as atherosclerosis, obesity, and diabetes. While the genome of several oral pathogens has been sequenced, quantitative understanding of the metabolic functions of any oral pathogen at the system level has not been explored yet. Here we pursue the computational construction and analysis of the genome-scale metabolic network of Porphyromonas gingivalis, a gram-negative anaerobe that is endemic in the human population and largely responsible for adult periodontitis. Integrating information from the genome, online databases, and literature screening, we built a stoichiometric model that encompasses 679 metabolic reactions. By using flux balance approaches and automated network visualization, we analyze the growth capacity under amino-acid-rich medium and provide evidence that amino acid preference and cytotoxic by-product secretion rates are suitably reproduced by the model. To provide further insight into the basic metabolic functions of P. gingivalis and suggest potential drug targets, we study systematically how the network responds to any reaction knockout. We focus specifically on the lipopolysaccharide biosynthesis pathway and identify eight putative targets, one of which has been recently verified experimentally. The current model, which is amenable to further experimental testing and refinements, could prove useful in evaluating the oral microbiome dynamics and in the development of novel biomedical applications.
منابع مشابه
Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions
Metabolic coupling of Mycobacterium tuberculosis to its host is foundational to its pathogenesis. Computational genome-scale metabolic models have shown utility in integrating -omic as well as physiologic data for systemic, mechanistic analysis of metabolism. To date, integrative analysis of host-pathogen interactions using in silico mass-balanced, genome-scale models has not been performed. We...
متن کاملGenome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications
Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...
متن کاملInvestigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data
Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...
متن کاملMetabolic Parameters and Oral Microbiota in Patients with Atherosclerosis
Background and Aim: Oral infections are usual between people of any age and can activate systemic inflammation. The microbiota consists of a variety of microorganisms that play an important role in metabolism, immune function, and homeostasis. Oral microbiota in human atherosclerotic plaques has been identified by various techniques. Therefore, the focus of study was to determine the correlatio...
متن کاملFlux Distribution in Bacillus subtilis: Inspection on Plurality of Optimal Solutions
Linear programming problems with alternate solutions are challenging due to the choice of multiple strategiesresulting in the same optimal value of the objective function. However, searching for these solutions is atedious task, especially when using mixed integer linear programming (MILP), as previously applied tometabolic models. Therefore, judgment on plurality of optimal m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 191 1 شماره
صفحات -
تاریخ انتشار 2009